產品介紹∣ProboStat™ 高壓標準系統
Search

ProboStat™ 高壓標準系統
High Voltage Normal System

【Norecs】高溫電氣測量系統和週邊設備 ProboStat™ 系統

ProboStat™  高壓標準系統

簡介

ProboStat High Voltage Normal System

高壓標準系統的典型用途:
•電介質的極化,擊穿測試,等離子電極等。
•受控氣氛或真空。
•在大於10 kV的直流電下進行的測試(僅饋通/基座–實際公差取決於樣品和大氣/壓力。

我要諮詢

​每一套ProboStat系統均包含一組配件。 這些配件中有的是通用的,有的僅適用於一些特定的測量方法。 以下列出了部分典型配置及其用途。

ProboStat高壓標準系統

高壓標準系統的典型用途:

  • 電介質的極化,擊穿測試,等離子電極等。
  • 受控氣氛或真空。
  • 在大於10 kV的直流電下進行的測試(僅饋通/基座–實際公差取決於樣品和大氣/壓力。

同樣適用於電介質和電陶瓷的常規特徵:

  • 盤狀樣品的直徑不超過給定直徑,比如12或20mm。
  • 可控氣氛和濃縮池。
  • 2和3電極設置。
  • 電導率,阻抗譜,直流電流測量。
  • 傳輸數,滲透性等。

 

高壓版的ProboStat允許進行使用鐵電和壓電材料的實驗。 ProboStat的基座裝配了可以承受大於10kV直流電的饋通件。
 
樣品室中的最終公差取決於電極和樣品的幾何形狀,溫度,壓力和氣氛以及樣品本身。 我們使用直徑為20 mm,厚度為3 mm的氧化鋁盤狀樣品在各種總壓力和溫度下測試了該裝置,並確認了擊穿電壓主要遵循Paschen公式。 
然後在大氣壓下,擊穿電壓通過電極之間的距離時被限製為5-9 kV DC。 在升高的溫度或較低的壓力下,擊穿電壓降低,並且發生等離子體放電。 
隨著氣壓進一步降低,進入低真空時,擊穿電壓再次上升(如Paschen公式所預測),並且即使在高溫下,也有可能再次達到超過10 kV DC的電壓。 這可以通過泵送到標準基座的氣體介面來完成。
通常,兩個外置的饋通室(HCS和LCS)被高壓饋通件代替。 標準版ProboStat基座的內部佈線也有些許改變,但其他保留下來的饋通件與標準版保持一致。
高壓饋線的微型接觸區應覆蓋有系統隨附的可滑動氧化鋁管。

在帶有高電壓的電池中使用熱電偶時,熱電偶應被我們提供的氧化鋁外殼管覆蓋,這可以防止高壓放電到熱電偶上。 
當然,用戶有責任採取必要的預防措施,以免使用者自己和所連接的儀器受到高壓電傷害

Each ProboStat system includes a set of accessories. Some are general-purpose, while others are specific to certain measurement methods. Below are examples of typical configurations and their applications.

High Voltage Normal System
 
Typical use:

  • Polarization of dielectrics, breakdown tests, plasma electrodics etc. 
  • Controlled atmospheres or vacuum 
  • Tolerate to > 10 kV DC (feedthroughs / base unit only – actual tolerance depends on sample and atmosphere/pressure)

The high-voltage system can also for regular characterization of dielectrics and electroceramics:

  • Disk samples of up to selected diameter, e.g. 12 or 20 mm
  • 2 and 3 electrode setups 
  • Conductivity, impedance spectroscopy, DC measurements 
  • Transport number, permeability, etc.

 

High voltage version of the ProboStat™ allows experiments with ferro- and piezoelectric materials. The ProboStat™ high voltage base unit is equipped with feedthroughs that tolerate >10 kV DC.

The final tolerance in the sample compartment depends on the electrode and sample geometries, temperature, pressure and atmosphere, and the sample itself. We have tested the setup at various total pressures and temperatures using a 20 mm diameter, 3 mm thick alumina disk sample, and confirmed that the breakdown voltage follows mainly Paschen's formula. At atmospheric pressure the breakdown voltage is then limited to 5-9 kV DC by the distance between the electrodes. At elevated temperatures or lower pressures, the breakdown voltage decreases and plasma discharge arises. At further lowering of the pressure into the low-vacuum the breakdown voltage again rises (as predicted by Paschen's formula), and it is again possible to reach voltages exceeding 10 kV DC, also at elevated temperatures. This may be done by pumping on the normal base unit gas connections.

Normally, it is the two outer chamber feedthroughs ("HCS" and "LCS") that are replaced by high voltage versions. Some changes from the normal ProboStat™ base unit are done in the wiring of shields, but otherwise the remaining feedthroughs are left as they are in the normal ProboStat™ base unit.

The mini-contact zones of the high voltage feedtroughs should be covered with slide-on alumina tubes supplied with the system.

When using a thermocouple in a cell carrying high voltages, the thermocouple should be covered by the envelope alumina tube that we supply. This will prevent high-voltage discharge to the thermocouple.

Naturally, the user is responsible for all further precautions required to protect users and connected instrumentation toward possible high-voltage discharges.